
Department of Electrical Engineering, Computer Science, and Mathematics
Institute of Computer Science
Computer Graphics, Visualization, and Image Processing
Fürstenallee 11
33102 Paderborn

Conceptualization and Prototypical
Implementation in WebGL of an Exercise in

Color Theory

Thesis
in Candidacy for the Degree of

Bachelor of Science

by
Lukas Stratmann

First Examiner
Prof. Dr. Gitta Domik-Kienegger

Second Examiner
Prof. Dr. Holger Karl

Advisor
Sabrina Heppner

Paderborn, 2017-01-30

Declaration of Authorship
I hereby certify that this thesis has been composed by me and is based on my own
work, unless stated otherwise. No other person’s work has been used without due
acknowledgement in this thesis. All references and verbatim extracts have been
quoted, and all sources of information, including graphs and data sets, have been
specifically acknowledged.

Place, date Signature

iii

Contents
1 Introduction 1

1.1 Problem . 1
1.2 Aim . 2
1.3 Approach . 2

2 Fundamentals 3
2.1 Advantages of Web-Based Applications 3
2.2 Computer-Aided Learning . 4
2.3 Color Models and Color Spaces . 4

2.3.1 CIE 1931 XYZ, CIE 1931 xy, and Gamuts 5
2.3.2 RGB and sRGB . 7
2.3.3 CMY and CMYK . 9
2.3.4 HSL . 10
2.3.5 HSV . 14
2.3.6 Munsell . 15
2.3.7 CIELAB . 15
2.3.8 YCbCr . 17

3 Concept 19
3.1 Analysis of Important Components 19
3.2 Visualizations . 21
3.3 Exercises . 23

3.3.1 Color Matching Exercise . 23
3.3.2 Color Selection Exercise . 24
3.3.3 Conversion Exercise . 25
3.3.4 Mixed Tasks Exercise . 26

4 Implementation 29
4.1 Frameworks, Tools, and Libraries 29
4.2 Visualizations . 30
4.3 Rendering . 33
4.4 Exercises . 37

5 Evaluation 41
5.1 Method . 41

5.1.1 Participants . 42
5.1.2 Statistical Analysis . 43

5.2 Results . 43

v

Contents

5.3 Discussion . 45

6 Conclusion 47

Bibliography 49

Appendices 53

A Questionnaire 55

B User Feedback 61
B.1 Visualizations . 61
B.2 Exercises . 61
B.3 Additional Feedback . 62

C Changelog Since Evaluation 65

vi

List of Figures
2.1 Conversion paths for the presented color systems 5
2.2 Gamut comparison CIE RGB, sRGB, Adobe RGB 6
2.3 RGB color space . 8
2.4 HSL color space, rotated RGB cube 11
2.5 Differences in brightness for equal HSL lightness 13
2.6 The HSV color space represented as a cone 14

3.1 Use case diagram . 19
3.2 Class diagram: Composition of a page for learning about color mod-

els and color spaces . 20
3.3 UI sketch: Interactive visualization RGB and HSL 21
3.4 Activity diagram for a color selection exercise 24
3.5 Activity diagram for a mixed tasks exercise 27

4.1 Class diagram for the composition of a visualization 32
4.2 Sequence diagram: Propagation of changes in visualization com-

parison . 34
4.3 Screenshot of the implemented RGB cube visualization 36
4.4 Class diagram for an exercise and its tasks 38

5.1 Violin plots of SUS scores . 44
5.2 Violin plots of numbers of correct answers 45

List of Tables
2.1 Specification of the sRGB primary colors within the CIE 1931 x, y

color space [13, p. 1] . 9
2.2 Examples of weight parameters for YCbCr-RGB conversion and

their recommended use. 17

5.1 Experiment design . 42
5.2 Demographical data of participants by group 43

vii

Listings

Listings

4.1 Example of HTML code for embedding the RGB cube visualization
inside a webpage . 31

4.2 Replacement of lines 2 to 4 in Listing 4.1 for a comparison of color
systems . 31

4.3 The vertex shader for all color systems. The matrices and the
variable called position are provided by Three.js. 33

4.4 The fragment shader for the RGB unit cube 35
4.5 The fragment shader for the HSV cylinder or cone. 35
4.6 HTML and JSON code for a mixed exercise consisting of color

matching and color selection tasks 39

viii

1 Introduction

Understanding digital color is important for a wide variety of people and their
occupations, including photographers, illustrators, CG artists, web developers, as
well as people working in data visualization, or on human-machine interfaces. To
understand the relationship between color models and to ideally be able to convert
between them has advantages when one is subjected to numerical representations
of colors. For example, when reading a CSS file, there would hardly be any
need for typing each value into a color picker or to use a specialized integrated
development environment (IDE) to get an impression of what each color might
look like. Furthermore, a conceivable disadvantage for programmers of knowing
only the RGB model, for example, is a tendency to pick exaggerated, bright and
saturated colors.

1.1 Problem

Up to this point, students in Paderborn attending the lecture for computer graph-
ics have had the opportunity to practice color models and learn about color
theory using a specialized module of a project called SIMBA [SD03, pp. 407ff.].
The project was funded by the German Federal Ministry of Education and Re-
search (Bundesministerium für Bildung und Forschung, BMBF) from 2001 to 2003.
SIMBA is an acronym for „Schlüsselkonzepte der Informatik in verteilten multime-
dialen Bausteinen unter besonderer Berücksichtigung spezifischer Lerninteressen
von Frauen“, which roughly translates to key concepts of computer science in
distributed multimedia modules under special consideration of specific learning
interests of women. It has been noted that such specific learning interests do not
necessarily exist [Tig08, p. 166], yet the module for color theory received positive
feedback from female and male students alike [Tig08, pp. 184ff.].
Unfortunately, the tool relies heavily on Java Applets. While Applets, up to

only a few years ago, used to be a useful means to share small applications over the
Internet without the need to explicitly download and install yet another program,
there now exist more practical alternatives. Due to stricter security measures in
web browsers, the current Java Applet for practicing color models has become
quite difficult to run. It now requires adjustments in the plug-in settings and, in
the case of Firefox 50.1, the dismissal of several warning messages.

1

1 Introduction

1.2 Aim
The aim of this thesis is to implement a new studying tool for color theory. In
turn, the aim for this tool is to convey a clear and precise understanding of color
models and color spaces. It should do so in a way that is effective enough so
that students will need little to no additional literature for grasping the essential
information. The software itself should be usable and work reliably on desktop
computers as well as on smartphones and tablets.

1.3 Approach
It was decided to move to an implementation in WebGL and therefore also in
Javascript (JS). Approaching the problem like this removes the need for the user
to have an implementation of Java installed. Neither do they require any other
additional software, such as browser plug-ins, that does not come pre-installed
with most desktop operating systems. A JS/WebGL implementation also opens
up the possibility to run the same application on mobile devices like smartphones
and tablets.

As the product to be developed is a piece of educational software, the infor-
mation that will be presented should be well-founded. These foundations are
researched in Chapter 2. Based on this information, Chapter 3 explores a concept
for the product and its components. In Chapter 4, relevant details of the imple-
mentation of this concept are discussed. Lastly, Chapter 5 presents a method and
the results of an evaluation of the prototype.

2

2 Fundamentals

In this chapter, the fundamentals of color theory with relevance to the aim of this
thesis will be explored. This includes the color models featured in the exercises
of the SIMBA project, namely RGB, HSL, and HSV. Furthermore, the CIE 1931
XYZ color space is studied as the basis for objective definitions of other color
spaces. Munsell and CIELAB are listed as an extension to the notion of HSL and
HSV of providing a color model based on the perception of colors by human beings.
The following sections on advantages of web-based applications and computer-
aided learning serve to provide insight useful for the subsequent chapter, where a
concept for the product will be developed.

2.1 Advantages of Web-Based Applications

Web-based applications as learning tools have some obvious potential advantages.
Compared to regular, non-web-based software, there is the advantage of portabil-
ity. Aside from a modern web browser, no additional software or plug-ins need
to be installed. Thanks to HTML5 and WebGL, even 3D visualizations like the
ones planned for this project can be run in the browser. Fewer requirements in
pre-installed software can make an application available to a larger group of people
with different operating systems and devices.
Provided the application is optimized for mobile devices, portability is even

higher. According to a recent poll, over 90% of Germans who are at least 18
and less than 35 years old reported owning a smartphone [Pou16, p. 20]. Since
smartphones are often more readily available than full-sized computers, there are
more opportunities for people with smartphones to open a web-based mobile ap-
plication with the intention to study. The question is whether they will use these
opportunities or rather work from a desk. One study from 2012 found that, among
surveyed students, about 47% were already using their smartphones for learning
while 76% of those who did not would consider it if it benefited their studies
[WMN12, p. 8].
Another big advantage of web-based applications and computer programs in

general is the ability to present visualizations in 2D or 3D as mentioned above.
Especially more complex topics can benefit from interactive rather than static
visualizations or from simulations. For example, the original SIMBA module for
color theory includes a 3D view of three different color models side-by-side that
shows the effects of manipulating any parameter of any of the three models.

3

2 Fundamentals

2.2 Computer-Aided Learning

Given the advantages of web-based applications presented in Section 2.1, questions
of interest are whether computer-aided learning with such tools makes any differ-
ence and, if so, what can be done to make them more effective. The first question
has been investigated in a number of studies, 23 of which have been analyzed in a
meta-analysis [Mea+09, pp. 18f.]. It has been discovered that, compared to face-
to-face instruction alone, augmenting this traditional method of studying with the
use of online-tools resulted in stronger learning outcomes [Mea+09, p. 19].

In respect to the previously mentioned simulations, the same meta-analysis
found their effect to be “modestly positive” [Mea+09, pp. 43f.]. Interestingly, while
they did not find quizzes as part of the online tools to be particularly effective
[Mea+09, p. 43], asking people to reflect on their progress and understanding did
seem to help in the nine studies assessing this method [Mea+09, pp. 44f.].

Mayer [May02, p. 31] defines the multimedia principle as people learning “more
deeply from words and pictures than from words alone”. Furthermore, the so-called
spacial-contiguity effect describes the notion that people learn more effectively
when pictures and corresponding text are placed closely together or when the text
is integrated into the illustration [MM99, p. 358]. This effect has been shown
in an experiment where text was placed at varying distances to an animation
explaining the formation of lightning [MM99, pp. 359f., p. 366]. In practical terms,
it is therefore useful to augment text with pictures, especially if the picture and
relevant text are not far apart. However, it is also advised not to include pictures
that do help explain what is said in the text [May+95, p. 31]. For example, on a
webpage teaching about color theory, a picture of a paint brush spanning half the
screen might be more distracting rather than conducive to the desired learning
outcome.

2.3 Color Models and Color Spaces

Physically, color is made up of visible light, which is electromagnetic radiation of
wavelengths between about 380nm and 700nm [10]. Pure spectral colors, known
as the colors of the rainbow, are composed of only one wavelength of light. All
other colors including white and pink, for example, must therefore be a mixture
of several wavelengths. Physiologically, human beings with normal color vision
perceive color with three different kinds of cone cells in their eyes. These cones
differ in sensitivity to certain wavelengths, peaking at about 419nm, 531nm, and
558nm [DBM83, p. 121], which correspond roughly to blue, green and red.

In the literature, the terms color model, color space, and color system are some-
times used interchangeably [AKM07, p. 1345]. In a more precise definition, a color
model describes an abstract way in which colors can be represented via a number
of components, for example red, green, and blue. By this definition, a system can
only be called a color space if such a model is combined with a definition for how

4

2.3 Color Models and Color Spaces

to interpret the components [GRR10, p. 394]. For instance, in the example of a
color model with components for red, green, and blue, one color space may specify
a green value equal to 1 with all other components equal to 0 to be slightly more
saturated and slightly more yellow than another. The term color system will be
used synonymously for both color model and color space in this thesis. If not
otherwise specified, component parameters will always be considered to be in the
[0,1] interval.
The following sections will provide an overview over a selection of important

color systems. For each system, at least one method of conversion to and from
another color system will be given. These respective other systems are chosen to
eventually allow the conversion between any two of the presented color systems.
Starting from an arbitrary color space (with the exception of CIE xy and Munsell),
Figure 2.1 shows which conversions are necessary to arrive at the desired other
color space.

Figure 2.1: Directed graph illustrating the paths necessary to convert be-
tween the presented color spaces

2.3.1 CIE 1931 XYZ, CIE 1931 xy, and Gamuts
To compare different color spaces, it is useful to look at their respective gamuts.
The gamut of a color space is the set of colors it can represent [BB09b, p. 102].
Gamuts are often visualized using so-called horseshoe or chromaticity diagrams
as shown in Figure 2.2, which are a projection of the gamut onto the Interna-
tional Commission on Illumination’s (Commission Internationale de l’Eclairage,
CIE) x, y coordinate system. The curved line around the horseshoe represents
all monochromatic (spectral) colors visible to the human eye. Every other visible
color is a combination of at least two different wavelengths and lies within the
enclosed shape.
In order to understand this projection, it is necessary to consider the higher-

dimensional XYZ color space, which is based on color matching experiments pub-
lished independently by William D. Wright in 1929 and John Guild in 1931. Sub-
jects were asked to recreate colors of the spectrum by adjusting the intensities of
three primary colors [Wri29, pp. 142, 148; Gui32, p. 156]. Wright and Guild first

5

2 Fundamentals

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CIE x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
IE

 y

390

460

470

480

490

500

510

520

540

560

580

600

620

700

CIE RGB

sRGB

Adobe RGB (1998)

Figure 2.2: Gamut comparison of the CIE RGB, sRGB, and Adobe RGB
(1998) color spaces in a CIE x, y chromaticity diagram. Numbers
around the curved line denote wavelengths of light in nm. Please note
that the colors in this diagram cannot be accurate and are for ori-
entation purposes only. Generated using the Python module colour
[Man+16].

6

2.3 Color Models and Color Spaces

mapped the data obtained from these experiments using coordinate systems each
axis of which corresponded to the intensity of one of the primary colors [Wri29,
p. 151; Gui32, p. 164]. However, negative values were possible because no three
primaries in combination alone can ever represent all colors of the spectrum and
because the colorimeters allowed for compensation if this was the case [Gui32,
p. 152].
The experiments mentioned above, which were conducted on several observers,

provided the combined data to define one standard observer [SG31, p. 79]. In
addition, a particular XYZ color space also depends on an illuminant or white
point [BB09b, pp. 101f.]. It can be useful to use different illuminants for different
conditions, as colors will be perceived differently in bright sunlight than in the
light of an incandescent bulb [SG31, p. 83].
The CIE XYZ color space is a transformation of a three-dimensional coordinate

system based on standardized primary colors in such a way as to guarantee the
following properties [BB09b, pp. 98f.]:

• For every color (X,Y, Z)T visible to human beings, X, Y , and Z are positive.
• Y aligns with the perceived brightness of a color.

On the basis of this XYZ space, one can arrive at an x, y chromaticity diagram
as mentioned above via the CIE’s definition of the x, y, z coordinates for a point
P = (x′, y′, z′)XYZ = (x′, y′, z′)T in the XYZ space [SG31, p. 89]:

x

x′
=

y

y′
=

z

z′
=

1

x′ + y′ + z′
(2.1)

Therefore it holds that

x =
x′

x′ + y′ + z′
, y =

y′

x′ + y′ + z′
, z =

z′

x′ + y′ + z′
. (2.2)

Any such point P can be described as a line l = 0 + λ · P through the origin
and P . From Equation 2.2 it follows that x + y + z = 1 and that every P is
scaled by λ = 1

x′+y′+z′ . Therefore, Equation 2.1 describes a projection through
the origin onto the plane x̃ + ỹ + z̃ = 1 for XYZ points (x̃, ỹ, z̃)T. The CIE
x, y coordinate system can then be attained simply by ignoring the z component
[BB09b, pp. 99ff.].

2.3.2 RGB and sRGB
As in Wright’s and Guild’s experiments described in Section 2.3.1, RGB colors
are produced by adding different intensities of red, green, and blue light. The
RGB color model can be understood as a cube in a three-dimensional Cartesian
coordinate system with one axis each for the red, green, and blue channels [BB09a,
p. 186]. A color can therefore be defined as a vector (r, g, b)T or a tuple (r, g, b)RGB,

7

2 Fundamentals

where r, g, and b are the color’s intensities for each channel. Figure 2.3 shows the
RGB cube for channel values in the [0, 1] interval. However, in computer graphics,
integral values between 0 and 255 (between 0 and FF in the hexadecimal system)
are also a popular choice. For example, RGB colors can be specified in either
notation both in CSS [Ç+11] and in OpenGL up to version 3.1 [06]. (Immediate-
mode vertex attribute specification was deprecated with OpenGL 3.0 [Ope16].)

R

0.0
0.2

0.4
0.6

0.8
1.0

G

0.0

0.2

0.4

0.6

0.8

1.0

B

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.3: The RGB model represented as a cube: Vertices are colored
according to the RGB color corresponding to their position within
the coordinate system [BB09a, p. 186, adapted].

Since the definition of the RGB model does not specify the exact shades of the
three primaries red, green, and blue, different RGB color spaces with different
gamuts are possible. Some examples are plotted in Figure 2.2, which shows the
CIE RGB, standard RGB (sRGB), and Adobe (1998) color spaces. Among other
parameters, sRGB defines locations for the three primaries red, green, and blue
within the CIE x, y space (see Table 2.1), as well as a transfer function for gamma
correction [13, pp. 1f.]. The transfer function for each component clin ∈ {r, g, b} of
an RGB color (r, g, b)T with linear intensities is shown in the following equation.

c =

{
12.92 · clin if clin ≤ 0.0031308

1.055 · c
1
2.4
lin − 0.055 if clin > 0.0031308

(2.3)

8

2.3 Color Models and Color Spaces

Table 2.1: Specification of the sRGB primary colors within the CIE 1931
x, y color space [13, p. 1]

Primary x y
R 0.64 0.33
G 0.30 0.60
B 0.15 0.06

In order to linearize a gamma-corrected RGB color, Equation 2.3 can be reversed:

clin =

{
c

12.92 if c ≤ 0.0031308 · 12.92(
c+0.055
1.055

)2.4 if c > 0.0031308 · 12.92
(2.4)

Linear RGB colors (rlin, glin, blin)
T can be converted from CIE XYZ coordinates

(x′, y′, z′)T, given the standard illuminant D65, via the transformation in Equa-
tion 2.5 [13, p. 1]. Given a linearized RGB color, the XYZ coordinates can be
calculated with the inverse matrix as in Equation 2.6.rlin

glin
blin

 = M ·

x′

y′

z′

=

 3.2406255 −1.537208 −0.4986286
−0.9689307 1.8757561 0.0415175
0.0557101 −0.2040211 1.0569959

 ·

x′

y′

z′

 (2.5)

x′

y′

z′

 = M−1 ·

rlin
glin
blin

 =

0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

 ·

rlin
glin
blin

 (2.6)

2.3.3 CMY and CMYK

Unlike RGB (see Section 2.3.2), the CMY color model makes use of subtractive
color mixing with the primaries cyan, magenta, and yellow, rather than additive
color mixing. Subtractive mixing may be familiar to most from painting with
watercolors. Furthermore, pigments for the colors cyan, magenta, and yellow are
commonly used in printers.
In principle, converting colors from RGB to CMY and back is simple. In the

RGB model, cyan can be obtained from a mixture of only green and blue, which
means when used as a filter or pigment, cyan absorbs red light. Similarly, magenta
absorbs green and yellow absorbs blue light. Using this information, the conversion
between an RGB color (r, g, b)T and the corresponding CMY color (c,m, y)CMY =
(c,m, y)T works by starting with white and subtracting the color in the opposite

9

2 Fundamentals

representation [BB09a, p. 223], as given in the following equations. c
m
y

 =

1
1
1

−

r
g
b

 (2.7)

r
g
b

 =

1
1
1

−

 c
m
y

 (2.8)

However, there is a problem with this method when used in practice. Accord-
ing to Equation 2.7, black is the mixture of 100% cyan, magenta, and yellow.
As can also be experienced with watercolors though, cleaning a brush in a glass
of water after painting with different colors more easily turns the water into a
brown hue than actual black. The common solution for this problem is to in-
troduce a fourth, black channel K. Another problem is the fact that CMYK and
color models like RGB are designed for different kinds of devices which often
operate with different gamuts. Conversion to CMYK is nontrivial and device-
dependent [HSF06, p. 159; BB09a, p. 224]. For the scope of this thesis, only the
straight-forward method for converting CMY colors (c,m, y)T to CMYK colors
(c′,m′, y′, k)CMYK = (c′,m′, y′, k)T will be considered. That is

c′

m′

y′

k

 =

c− k
m− k
y − k
k

 , (2.9)

where k = min {c,m, y} [BB09a, p. 223]. Because of the introduction of the K
channel, less intensity is needed in the other three channels. This is accounted for
by the subtraction of k from the original CMY color in Equation 2.9.

2.3.4 HSL
Even though most human eyes detect colors similarly to how the RGB model works
(see Section 2.3), we normally do not think or talk about colors as a mixture of
these three components. We might, however, talk of colors as being more or
less saturated than others, having different hues or tones, or as being brighter
than others. For this reason, many software applications (open-source examples
are Blender1, the GNU Image Manipulation Program2 (GIMP), Inkscape3, and
Krita4) include color pickers which try to cater to our perception of colors in the
terms mentioned above [JG78, p. 21].

One such perceptual color model is HSL (also called HLS [BB09a, p. 207]), which
1https://www.blender.org/
2https://www.gimp.org/
3https://inkscape.org/en/
4https://krita.org/en/

10

https://www.blender.org/
https://www.gimp.org/
https://inkscape.org/en/
https://krita.org/en/

2.3 Color Models and Color Spaces

is an acronym for hue, saturation, and lightness. Originally, it was introduced by
Joblove and Greenberg as “hue/chroma/intensity” [JG78, pp. 22f.]. They describe
the color space as a biconal solid similar to Figure 2.4a, in which the vertical
axis represents all shades of gray between 0 (black) and 1 (white). All fully
saturated colors then lie on the outer circle of the common basis of both cones at
L = 0.5, which allows for the hue to be defined as an angle. The third parameter,
saturation, corresponds to the radius of the circle around the vertical axis at the
position of the current lightness.

L

SH

(a) The HSL color space in its biconal
representation [BB09a, p. 207, adapted] (b) The rotated RGB cube

Figure 2.4: Comparison of the HSL cones with the rotated RGB cube

Given an RGB color (r, g, b)T, the lightness l, and saturation sHSL of an HSL
color (h, sHSL, l)HSL = (h, sHSL, l)

T are defined as follows [BB09a, pp. 212f.]:

l =
max{r, g, b}+min{r, g, b}

2
(2.10)

sHSL =

0 if l = 0

0.5 · max{r,g,b}−min{r,g,b}
l if 0 < l ≤ 0.5

0.5 · max{r,g,b}−min{r,g,b}
1−l if 0.5 < l < 1

0 if l = 1

(2.11)

The reasoning for these conversion formulae can be better understood when vi-
sualizing the RGB cube from Figure 2.3 tilted so that black is still in the origin

11

2 Fundamentals

and the diagonal line where r = g = b now aligns with the vertical axis. For the
lightness component, Equation 2.10 relates the original RGB color to said diago-
nal within the RGB cube, while Equation 2.11 establishes a measure of distance
from this diagonal line for the saturation.

The hue h ∈ [0, 1] corresponds to an angle h · 2π in radians. It is calculated
from the given RGB color with intermediate steps as follows [BB09a, p. 208]:

r′

g′

b′

 =

max{r,g,b}−r

max{r,g,b}−min{r,g,b}
max{r,g,b}−g

max{r,g,b}−min{r,g,b}
max{r,g,b}−b

max{r,g,b}−min{r,g,b}

 (2.12)

h′ =

b′ − g′ if max{r, g, b} = r

r′ − b′ + 2 if max{r, g, b} = g

g′ − r′ + 4 if max{r, g, b} = b

(2.13)

h =
h′

6
mod 1 (2.14)

Because r, g, b ∈ [0, 1], r′, g′, and b′ are all contained within the interval [0, 1].
Without loss of generality, this can be seen if max{r, g, b} is assumed to be r. In
that case, r′ is equal to 0 and g′ = r−g

r−min{r,g,b} , b′ = r−b
r−min{r,g,b} ∈ [0, 1], since the

numerator can only be less than or equal to the denominator. Therefore, each of
the sums in the calculation of h′ must be in the interval [−1, 1]. Consequently,
h′ ∈ [−1, 5] and h ∈ [0, 1].

In the special cases of fully saturated red, green, and blue, the conversion results
in hue values of 0, 2

6 , and
4
6 , respectively. The other non-gray vertices of the RGB

cube yellow, cyan, and magenta are assigned the hues 1
6 ,

3
6 , and

5
6 . Note that, in

the case of yellow where max{r, g, b} = r = g, it makes no difference which of the
two fitting cases is calculated.

To convert an HSL color (h, sHSL, l)
T back into the RGB color (r, g, b)T, first the

two cases need to be considered where hue and saturation are undefined [BB09a,
p. 213]: r

g
b

 =

{
(0, 0, 0)T if l = 0

(1, 1, 1)T if l = 1
(2.15)

Equation 2.13 partitions the circle of hues into three times two sectors, depending
on which component in the original RGB color was larger than the others. In
order to reverse this and to obtain the RGB color, it is helpful to first calculate
some intermediate values [BB09a, p. 214] as follows:

h′ = (6 · h) mod 6

c1 = ⌊h′⌋
c2 = h′ − c1

12

2.3 Color Models and Color Spaces

d =

{
sHSL · l if l ≤ 0.5

sHSL · (1− l) if l > 0.5

u1 = l + d

u2 = l − d

u3 = u1 − (u1 − u2) · c2
u4 = u2 + (u1 − u2) · c2 (2.16)

Here, c1 is an index for the hue’s sector and c2 is the position in that sector. As
sHSL models a radius between 0 and 1, d can be understood as the radius adjusted
for the biconal representation of the HSL color space. It is guaranteed to be within
the interval [0, 0.5]. Therefore, u1 will always be the maximum component in the
new RGB color, and u2 will be the minimum. u3 and u4 interpolate between the
maximum and minimum with varying hues in different directions. From these
intermediate values, the final RGB values can be assembled [BB09a, p. 214]:

r
g
b

 =

(u1, u4, u2)
T if c1 = 0

(u3, u1, u2)
T if c1 = 1

(u2, u1, u4)
T if c1 = 2

(u2, u3, u1)
T if c1 = 3

(u4, u2, u1)
T if c1 = 4

(u1, u2, u3)
T if c1 = 5

(2.17)

While the HSL color model has been designed to make color-picking easier for
human beings, it is not perfect. One reason for this is the assignment of the same
lightness to all three primaries. As seen in Table 2.1, in the sRGB space primaries
are assigned different positions on the y axis. When transforming these definitions
of primary red, green, and blue back into the XYZ space, differences in the Y
component remain. Therefore, the primaries as defined for the sRGB space do
not have the same perceived brightness, which means lightness in the HSL model
is not the same as perceived brightness. This becomes apparent when comparing
the HSL colors of maximum saturation and lightness 1

2 with a gray-scale image of
the true perceived brightness values as shown in Figure 2.5.

Figure 2.5: Differences in brightness for equal HSL lightness. Top: Colors
(h, 1, 12)HSL ∀ h ∈ [0, 1]. Bottom: Gray-scale colors produced by
keeping the Y component in XYZ space constant while removing all
chromaticity.

13

2 Fundamentals

2.3.5 HSV

The HSV color model shares most of its properties with HSL. The letter V stands
for value and is sometimes interchanged with the letter B for brightness [BB09a,
p. 205], which points to the fact that the third component is defined differently
in this color model. Instead of transforming the RGB cube into a biconal shape,
HSV starts with a single inverted cone as shown in Figure 2.6. The hue is again
an angle which can be calculated in the same way as for HSL with Equations 2.12,
2.13, and 2.14. With the value or brightness for an RGB color cRGB = (r, g, b)T

now being defined simply as v = max{r, g, b}, the saturation sHSV is defined as
follows for cRGB ̸= (0, 0, 0)T [JG78, p. 22]:

sHSV =
max{r, g, b} −min{r, g, b}

max{r, g, b} (2.18)

V

SH

Figure 2.6: The HSV color space represented as a cone [BB09a, p. 207,
adapted]

Calculating the RGB values (r, g, b)T from a given HSV color (h, sHSV, v)HSV =
(h, sHSV, v)

T works similarly as it does for HSL. h′, c1, and c2 are obtained via the
formulae given in Equations 2.16. The RGB values are then assembled as follows
[BB09a, p. 210]:

w1 = (1− sHSV) · v
w2 = (1− sHSV · c2) · v
w3 = (1− sHSV · (1− c2)) · v

14

2.3 Color Models and Color Spaces

r
g
b

 =

(v, w3, w1)
T if c1 = 0

(w2, v, w1)
T if c1 = 1

(w1, v, w3)
T if c1 = 2

(w1, w2, v)
T if c1 = 3

(w3, w1, v)
T if c1 = 4

(v, w1, w2)
T if c1 = 5

(2.19)

For the same reason described at the end of Section 2.3.4, the value or brightness
of an HSV color does not correspond perfectly to a color’s brightness as it is
perceived by human beings. This means, if the value component is left constant
and only saturation or hue are changed, one cannot expect the original and the
new color to be perceived as equally bright. Therefore, both value and lightness
may at best serve as an approximation of brightness.

2.3.6 Munsell

One solution to the issues with HSL and HSV presented in Section 2.3.4 and
Section 2.3.5 is to look at a color system that, at least in part, inspired the
creation of the HSL color model [JG78, p. 22]. Like the XYZ color space, but
with different tools, the Munsell system is based on experimental data [Mun12,
p. 236].
The system describes a so-called “color-tree” [Mun12, p. 240]. Similar to HSL

and HSV, there is a vertical axis representing brightness, in this case also called
value. Here, the human eye’s response to light intensity is modeled logarithmically
[Mun12, p. 237]. Hue is again defined as an angle with complementary colors
positioned opposite to each other, and saturation, in this case called chroma, is
defined as a radius [Mun12, pp. 237f.]. An important difference to HSL and HSV is
the following: Because the Munsell chroma is based strictly on human perception
of color saturation, the color space cannot be represented in a perfectly round
shape [Mun12, p. 240]. Rather, from a top-down view, clear protrusions are visible
for example around the hue angle for red and for a mixture of blue and purple
[Mun12, p. 242], which indicates that pure colors of these hues are perceived as
more saturated than others.
Munsell recorded samples within this color space in his Munsell Book of Color.

In 1943, with the intention to reduce irregularities in the spacing of those color
samples, the samples were analyzed experimentally and their position within the
CIE xyY color space was determined [NNJ43, pp. 385f.]. This data can be used
to convert colors from the Munsell system into xyY.

2.3.7 CIELAB

Another popular solution for the issues with HSL and HSV presented in Sec-
tion 2.3.4 and Section 2.3.5 is the CIE L*a*b* color space. One of the goals

15

2 Fundamentals

for developing this color space was a formula to quantify the perceived difference
between two colors [McL76, pp. 339f.].

The L*a*b* space is defined as a transformation of the CIE 1931 XYZ color
space via the following equations for L*a*b* colors (l, a, b)T and XYZ colors
(x′, y′, z′)T [McL76, p. 340]:

l = 117 · f
(
y′

Y0

)
− 16

a = 500 ·
(
f

(
x′

X0

)
− f

(
y′

Y0

))
b = 200 ·

(
f

(
y′

Y0

)
− f

(
z′

Z0

))
, (2.20)

where (X0, Y0, Z0) is a given illuminant or white point, typically the standard
illuminant D65 [BB09b, p. 104]. D65 was determined to correspond roughly
to daylight with a color temperature of 6500◦K and has the xyz coordinates
(0.3127, 0.3291, 0.3582)T, given the CIE 1931 standard observer [Jud+64,
p. 1036]. Normalizing to Y = 1 yields the approximate XYZ coordinates
(0.9502, 1.0, 1.0884)T. The function f was originally defined as f(c) = c

1
3 if

c > ct = 0.01. Otherwise the so-called ANLAB equation was supposed to be
used in order to avoid negative L* values for dark colors close to Y = 0 [McL76,
p. 340]. For the ISO 31655 standard, this has been slightly changed to the
following function f1 with ct1 = 0.008856 [BB09b, p. 104]:

f1(c) =

{
c
1
3 if c > ct1

7.787 · c+ 16
116 if c ≤ ct1

(2.21)

Converting from a given L*a*b* color back into XYZ space works as follows
[BB09b, p. 105]:

f2(c) =

{
c3 if c3 > ct1
c− 16

116
7.787 if c3 ≤ ct1

y′0 =
l + 16

116

x′ = X0 · f2
(a

500
+ y′0

)
y′ = Y0 · f2

(
y′0
)

z′ = Z0 · f2
(
y′0 −

b

200

)
(2.22)

Due to the design of this color space to be uniform, the difference between two
colors (l1, a1, b1)T and (l2, a2, b2)

T will be perceived approximately the same as the
difference between two other colors if the Euclidean distance in L*a*b* space is
the same. The square of the Euclidean distance, shown in Equation 2.23, is called

16

2.3 Color Models and Color Spaces

the color-difference formula [McL76, p. 340].

∆E(CIELAB) = (l2 − l1)
2 + (a2 − a1)

2 + (b2 − b1)
2 (2.23)

2.3.8 YCbCr
The YCbCr model is of interest due to its use in television and the JPEG image
compression. Y represents luminance, Cb is the weighted difference between the
luminance and blue, and, similarly, Cr is the weighted difference between the
luminance and red. The general conversion from an RGB color (r, g, b)T into
YCbCr represented as (y, cb, cr)

T is defined as follows for weights wR, wG, and
wB = 1− wR − wG [BB09b, p. 221]:

y = wR · r + wG · g + wB · b

cb =
1

2 · (1− wB)
· (b− y)

cr =
1

2 · (1− wR)
· (r − y) (2.24)

The direction from YCbCr to RGB is given as follows:

r = y + 2 · (1− wR) · cr

g = y − 2 · wB · (1− wB) · cb − wR · (1− wR) · cr
wG

b = y + 2 · (1− wB) · cb (2.25)

Alternatively, once the three weights are given, the Equations 2.24 can be written
as a transformation matrix. It is then possible to use the inverse matrix for
conversion in the other direction. Table 2.2 shows a list of recommended weights
for different use cases.

Table 2.2: Examples of weight parameters for YCbCr-RGB conversion and
their recommended use.

Recommended use wr wg wb
Standard television [11a, p. 2], 0.299 0.587 0.114JPEG [11b, pp. 3f.]
HD television [15b, p. 4] 0.2126 0.7152 0.0722
UHD television [15a, p. 4] 0.2627 0.6780 0.0593

17

3 Concept

This chapter first presents a concept for the product at large in Section 3.1. The
two central components of this concept then are discussed in more detail in Sec-
tion 3.2 and Section 3.3.

3.1 Analysis of Important Components
As shown in Figure 3.1, generally speaking, the purpose of the exercise that is to
be developed is threefold. Firstly, it provides the student with opportunities to
learn about color and color vision in general. Secondly, the student is able to learn
about specific color models and color spaces, and, finally, there is functionality for
the student to practice what they already know or what they learned in the first
two cases. In the context of this thesis, especially the second and third use case are
of importance. The second use case about color models and color spaces reflects
the contents of Section 2.3 and includes interactive visualizations of individual
color spaces. The third use case can be used by students to study for an exam,
or by any person to reflect on what they already understand and where further
study might be required.

Figure 3.1: Use case diagram of the basic tasks a person using the product
might wish to accomplish

19

3 Concept

Each color model or color space is presented on its own page. Figure 3.2 shows
how these pages are related to the interactive visualizations. In addition to plain
HTML text and links, a page may include any number of figures. Visualizations
are treated as a special kind of figure and visualize at least one color space. The
case in which one visualization shows more than one color space can be useful for
comparing different color spaces or for visualizing conversions.

Figure 3.2: Class diagram showing the composition of a page for learning
about color models and color spaces

Interaction with a visualization depends on the color spaces currently shown.
Figure 3.3 shows a sketch of what the controls for such a visualization might look
like when the RGB cube and the HSL space are visualized side-by-side. Below
each three-dimensional representation are sliders and input boxes for adjusting the
relevant parameters of each system. Changing any one of the sliders triggers the
following changes: The selected color in the bottom left is updated, the location of
the selected color within the respective color spaces is shown, and the inputs of the
other color models are adjusted to show the parameters for the same selected color.
So far in this thesis, most color spaces have been drawn as a wireframe model.
In the lower right corner of Figure 3.3 is shown a button for revealing a set of
advanced controls. These may include settings for switching between a wireframe
representation and an opaque or half-transparent solid. Additionally, options for
switching between floating point RGB values and values between 0 and 255 may
be implemented, as well as the option to represent hue in the [0,1] interval, in
radians, degrees, or as integers between 0 and 255 as well. Since these settings are
optional and not immediately relevant to understanding the color models, they
are hidden by default.

20

3.2 Visualizations

Figure 1:

R:

G:

B:

Full screen

Selected color Advanced

H:

S:

L:

L

SH

0.33

0.75

0.25

0.31

0.82

0.29

Comparison between the RGB cube and the HSL color space.

Figure 3.3: UI sketch of an interactive visualization and comparison of RGB
and HSL

3.2 Visualizations
In the following, potential visualizations for each of the presented color systems
in Section 2.3 will be discussed.

CIE XYZ, CIE xy: A chromaticity diagram in CIE xy space as shown in Figure 2.2
is essential because it helps to illustrate the limits of practical color spaces,
as well as differences between them. The transformation from the three-
dimensional XYZ space into the two-dimensional x, y space can be demon-
strated by showing the intersection of the visible gamut with the x̃+ỹ+z̃ = 1
plane. If the visible gamut is rendered transparent, the resulting projections
can be drawn directly onto the projection planes.

RGB and sRGB: Most important for the RGB model is the RGB cube as shown in
Figure 2.3 and Figure 3.3. For demonstrating the perceptual non-uniformity
of the sRGB space, the visual comparison with another color space is useful.
By design, the CIELAB or Munsell system would be ideal. However, because
of the relative simplicity of the RGB model, it can be expected that it will be
among the first a student will learn. This issue can be addressed by giving
the student a list of suggested color spaces for comparison with links to their
respective pages. In a visualization similar to Figure 3.3 the student may
then select one of the suggested color spaces which they are already familiar
with for comparison with the RGB cube.

21

3 Concept

CMY and CMYK: Since the CMY cube is merely a flipped RGB cube, the visu-
alization of CMY is very similar to that of RGB.

HSL and HSV: Seeing the double cone of Figure 2.4a for HSL or the single cone
of Figure 2.6 is useful for understanding the definition of the HSL and HSV
color models. The conversion formulae describe a cylinder which is often
shown from a top-down view in color pickers, for example in the open-source
programs Blender1 or MyPaint2. Another possible representation is an HSL
or HSV cube, which is produced by treating the three components of the
respective color model as axes for a Cartesian coordinate system. MyPaint,
for instance, includes a color picker which allows a user to view the HSV
cube from three different sides. Therefore, in order to help students un-
derstand the relationship between the original color model and what they
may be used to seeing in color pickers, a visual comparison between different
representations of HSL and HSV can be useful.

In addition, a re-creation of Figure 2.4, in which HSL and RGB can be
compared side-by-side, is useful to illustrate the conversion of colors. As
the SIMBA visualizations demonstrate, this comparison is not limited to
HSL and RGB. HSV and RGB can be compared in the same way, and a
comparison of HSL and HSV can be used to highlight the similarities and
the differences between the two color models.

Munsell: Given the Munsell renotation data [NNJ43, pp. 397–405], it is possible
to render the Munsell color tree in three dimensions as it is described in
Section 2.3.6. As a demonstration of the difference to HSL and HSV, one of
these color systems may be displayed in addition to the color tree.

CIELAB: The L*a*b* color space is a transformation of the XYZ space and it,
too, contains all colors visible to the human eye. One visualization may
therefore show the visible gamut or, for example, the sRGB gamut in three-
dimensional space. A visual comparison to the XYZ space can furthermore
demonstrate the function of L*a*b*, which is to keep colors that are per-
ceived equally distant from one another equally distant in the color space.

YCbCr: As explained in Section 2.3.8, the YCbCr color space can be arrived at via
applying a transformation matrix to any RGB color. Therefore, depending
on the parameters wR, wG, and wB, the YCbCr color space can be visualized
as an appropriately transformed RGB cube inside a Cartesian coordinate
system with axes for Y , Cb, and Cr.

1https://www.blender.org/
2http://mypaint.org/

22

https://www.blender.org/
http://mypaint.org/

3.3 Exercises

3.3 Exercises
The SIMBA project for computer-generated color already includes three exercises
worthy of being reproduced with only minor adjustments. In this section, these
exercises will be discussed in regards to their strengths and potential weaknesses.
Finally, possible augmentations will be explored and a new exercise will be pre-
sented.

3.3.1 Color Matching Exercise

In an instance of what shall be called a color matching exercise, a random but
constant color is shown in a rectangle on the left and another adjustable color is
shown on the right. The second color can be adjusted via sliders. Using these, the
user’s task is to get both rectangles to show the same color. If the selected color
is close to the original, a label indicates that they are almost correct, and if the
two colors match, the label will notify about this as well.
In the SIMBA project, this exercise is only available for the RGB color sys-

tem. In this context, it provides a good way for students to experience the lack
of intuitiveness with using the RGB model for color picking. Moreover, this ex-
ercise encourages the user to apply their understanding of the model’s param-
eters. In contrast, if the student were not given the task of actually matching
two colors, they would possibly explore predominantly the extrema for each pa-
rameter and, in the process, might not fully grasp the influence each parameter
has on the final color. For example, when one has tested all eight RGB colors
(0, 0, 0)T, (0, 0, 1)T, . . . , (1, 1, 1)T, it is not yet clear where to find a certain shade
of brown.
Thanks to its simplicity, this color matching exercise can be easily adapted

for any other color system. Almost every model presented in this thesis allows
a color to be selected by adjusting three or four sliders. Giving students the
possibility of comparing variations of this exercise for different color systems may
help them grasp both the meaning of each parameter, as well as advantages and
disadvantages of each system in respect to ease of use.
One problem with the original exercise is that, from time to time, the two colors

will look as though they are the same, but no indication for a successful match
will be given. To reduce frustration on the part of the user, additional indicators
may be introduced. For example, the CIE 1976 color difference formula [McL76,
p. 340] can be used to quantify the perceptual difference between the two colors.
Showing the Euclidean distance of the two colors within the RGB cube might be
useful for pointing out that, in the above scenario, the two colors are indeed not
the same. On the other hand, one must be careful not to let these indicators tempt
students into cheating the exercise. Given the Euclidean distance, for example,
each RGB component could be adjusted one after the other to the point where the
distance is minimal, not requiring much knowledge about the color space. This
can be avoided to some extent by only revealing the distance after the push of a

23

3 Concept

button.

3.3.2 Color Selection Exercise
The user’s interaction with this exercise is shown in an activity diagram in Fig-
ure 3.4. Essentially, the task is to find a random color given in numerical form
among a list of other random colors. In the SIMBA project, this task is considered
easy. Provided the differences between the colors to select from are not too large
and the list of colors is not too long, a student should be quick to find the correct
color. The original exercise displays seven colors in addition to the target.

Figure 3.4: Activity diagram for a color selection exercise. In each of M
rounds, the student is presented with a random numerical color vec-
tor of a color system S. This color is shuffled with N other colors
and drawn to the screen. The student must select that color which
matches the given numerical representation.

Like the color matching exercise of Section 3.3.1, the color selection exercise is
flexible in regards to the color systems it can be used with. Either exactly one color
system can be practiced in particular, or one color system of a pre-selected set of
systems may be chosen at random in each round for the numerical representation.
The latter option is most useful when studying for an exam because it discourages
students to, perhaps unconsciously, avoid those color systems with which they are
not as familiar with.

The original exercise produces a new set of random colors every time the user

24

3.3 Exercises

clicks a button. For motivational purposes, however, it may be of advantage to
let the student do the exercise for M rounds as shown in Figure 3.4, after which
they will receive a score. Ideally, this score will give them an indication for how
much they still need to study in order to better understand the color systems in
question. To this end, the score may include the number of colors the student
selected correctly with the first try. A comparison of their score to the average
user may serve as said indicator for self-assessment as well as a motivator for
improvement.

3.3.3 Conversion Exercise
For students, a color conversion exercise is especially interesting because it is the
easiest to be integrated in exams, which are typically printed in black and white.
In SIMBA however, the conversion exercise is available on the push of a check-
box with the label „schwer“ (difficult). The reason for this is that the exercises
presented in Section 3.3.1 and Section 3.3.2 tolerate a larger amount of educated
guessing. Still, the original exercise does not require the precise calculation of the
converted color parameters. For example, when tasked with the conversion of the
HSL color (0.56, 0.6, 0.8)T into RGB, the answer (0.67, 0.78, 0.86)T is considered
correct and therefore close enough to the more exact corresponding RGB color
(0.68, 0.83, 0.92)T. In addition, the three-dimensional visualizations of the three
color systems RGB, HSL, and HSV are visible the entire time and reflect the user’s
input. In the following, three possible variations of the conversion exercise will be
discussed.

Easy: Only key colors are asked to be converted. For instance, in HSV and HSL,
colors that are fully saturated or not saturated at all can be converted be-
tween the two systems, as well as from and to RGB, with relative ease.
There are limitations to this variant, however. Key colors that are easy to
memorize do not exist in the CIELAB, CIE XYZ, and Munsell color spaces.
Furthermore, the different weights recommended for YCbCr complicate the
conversion to other color spaces. This variation of the color conversion ex-
ercise is therefore limited to RGB, HSL, HSV, and CMY.

Medium: An alternative to the original SIMBA color conversion exercise has been
used in an exam before and is somewhat more challenging than the variant
Easy. Like in the color selection exercise of Section 3.3.2, students are given
a color represented numerically in one color system. Instead of from a list
of colored patches, they must now select the matching color from a list of
colors represented in another color system. Similar limitations exist as do for
the variant Easy, since CIELAB, CIE XYZ, Munsell, and YCbCr can not be
easily converted to or from without aid. If HSL or HSV are involved, the task
can be slightly simplified further by choosing multiples of 1

6 or 1
12 for the hue.

In general, too many decimal places should be avoided in order to facilitate

25

3 Concept

mental arithmetic. Students should focus primarily on understanding the
color systems and be encouraged to finish the set number of rounds of the
exercise at least once.

Advanced: This variation is closest to the original SIMBA exercise. The user
must specify the values of the converted color manually using sliders or the
keyboard. Like in the original, a threshold is chosen for a maximum distance
between the correct conversion and the values the user selected at which the
response is still considered correct. As an alteration, if the user’s selection is
within this threshold but not equal to the exact result, the exact conversion
can be shown and, optionally, compared visually to the selection.

For all three variations, a system of rounds to complete can be implemented
equivalent to that shown in Figure 3.4. Because this exercise can be difficult, it
makes sense to show visualizations of both color spaces involved in the conversion.
On the other hand, since typically no such visual aid is given in exams, the user
has the option to switch to an exam mode in which visualizations are disabled for
this exercise.

3.3.4 Mixed Tasks Exercise
The aim of this new exercise is to convey the purpose and effects of color systems’
parameters in a context that is closer to real-world applications than manual
color conversion, for example. Figure 3.5 shows the student’s interaction with
this exercise similarly to Figure 3.4 for M rounds, after which they receive a
score with the number of tasks they solved correctly. The diagram indicates that
before the exercise starts, the user first selects a number of color systems they
want to practice. Alternatively, this selection can be abbreviated through links to
recommended exercises from one of the descriptive color system pages. From the
non-empty set of selected color systems, one is chosen randomly in each round.
Many of the systems presented here can have several different tasks associated
with them. Possible tasks for each color model or color space will be explored in
the following.

CIE XYZ, CIE xy: Reduce or increase brightness in XYZ. Since the axes in these
color systems represent imaginary primary colors, simple tasks for an exercise
cannot be easily constructed.

RGB and sRGB: Reduce or increase brightness. For example, in order to increase
brightness, it is sufficient to increase the value of either red, green, or blue.
Tasks similar to those for HSL and HSV are also possible, although they
would make this exercise very similar to the conversion exercise.

CMY and CMYK: Reduce or increase brightness. This task is similar to the RGB
task.

26

3.3 Exercises

Figure 3.5: Activity diagram for a mixed tasks exercise

HSL and HSV: Given an HSL or HSV color:
• (De-)Saturate (without changing hue or lightness/value).
• Make the color darker/brighter (without changing hue or saturation).
• Give the color a shade between e.g. green and yellow (without changing

saturation or lightness/value).

Munsell: Tasks for Munsell can include the tasks for HSL and HSV with adapted
terminology.

CIELAB:
• Given two L*a*b* colors x and y, find another color that is as distant

from y as y is distant from x.
• Given an L*a*b* color, find another color with less/more chroma. Find-

ing the exact same color with more or less chroma in the CIELAB space
is, unfortunately, nontrivial. Especially hues of blue tend to turn purple
with increasing distance from the white point and constant brightness
[Mor03, pp. 371f.].

YCbCr: Reduce or increase brightness.

In addition to these system-specific tasks, more tasks can be made available for
certain combinations of color systems, provided the combination is reflected in the
user’s selection at the beginning of the exercise. One example is to again ask the
user to change the hue of a given color without changing the apparent brightness.
Instead of giving this task in the context of the Munsell or CIELAB color space,
the student must find the appropriate color system by themselves.

27

4 Implementation

A selection of the most important implementation details is presented in this
chapter. This includes an overview of the tools used to build a website with
the desired functionality, as well as descriptions of the implementation of the
visualizations and exercises.

4.1 Frameworks, Tools, and Libraries
When building a website, there is a large number of libraries and tools to choose
from which aim to make the development process easier. This section gives an
overview of the technologies used in this project and explains why they were
chosen. The benefits of an implementation in WebGL were already explored in
Section 1.3. Using WebGL implies also using HTML and JavaScript.

Javascript / ES6: This project uses the version of JavaScript known by the name
of ECMAScript 2015 or ECMAScript 6 (ES6) [Wir15, p. xvii]. Among other
things, this version makes object-oriented programming more easily readable
by introducing the keyword class. Previously, classes had to be written as
specialized functions. Another new feature is that classes can be bundled
into modules, which, in theory, can be accessed from other classes using the
keyword import.

Babelify: By the time this project was going to be implemented, the ES6 import
feature was not yet supported in modern browsers [16]. However, with the
use of a transpiler like Babelify, ES6 can still be used for development.
Before publishing, the code is first compiled into a single JavaScript file
compatible with current browsers. Babelify is actually a combination of two
tools: The first is Babel, which translates all ES6 code but does not resolve
dependencies defined via import. The latter is done with the help of a tool
called Browserify.
Browserify-Shader Like Browserify resolves references to other JavaScript

files, Browserify-Shader enables the inclusion of shader text files via the
require function.

Three.js: Three.js adds an abstraction layer on top of WebGL. It provides scene
graph functionality, which allows to organize 3D objects hierarchically, thus
making the positioning and animation of elements somewhat simpler. The
library also comes with a number of predefined primitives and materials.

29

4 Implementation

Jquery: Jquery is a helpful library which makes it easy to manipulate the HTML
content of a page via CSS-like selectors. This functionality can be leveraged,
for example, to dynamically insert slider controls depending on the currently
shown visualization.

MathJax: Since the conversion between color spaces requires some mathematical
formulae, it makes sense to make these as readable as possible. MathJax
can interpret LATEX code embedded in HTML.

UglifyJS: With ES6 and Browserify it is possible to subclass existing Three.js
classes. The advantage is that Three.js does not need to be included in
the HTML header in its entirety. On the other hand, this leads to a very
large new JavaScript file of almost 4MiB. UglifyJS can optimize this code
for example by removing redundant whitespaces or renaming functions and
variables. It manages to shrink the original file down to only about 870KiB.
This file size can be reduced even more by instructing the server to use gzip
compression.

Less CSS: Less CSS, an extension of CSS, is used to make the project’s CSS
code more maintainable. This is achieved with the use of variables, mod-
ularization, and nested selectors, among other things. Since browsers only
support regular CSS, code written in Less first needs to be compiled before
publishing.

Normalize.css: Different browsers may have different default settings for the font
or spacing between paragraphs, for example. Normalize.css aims to make
websites look the same regardless of the browser used.

PHP: The evaluation of this project requires server-side scripting in order to
keep the experimental groups separate. For server-side scripting, PHP is a
popular choice and, importantly, is supported by most hosting providers.

Symfony: Symfony is a PHP framework that includes useful features like tem-
plating via the templating engine Twig, as well as object-relational mapping
(ORM) for databases via Doctrine. The framework makes it relatively easy
and secure to store a number of users and to provide login and registration
forms.

4.2 Visualizations
In software engineering, it is good practice to keep content, design, and functional-
ity separate. In web development, the fact that there are three different languages
for the three different purposes on the client side encourages this pattern. Regard-
ing the visualization of color spaces, Listing 4.1 provides an exemplary container
within the content of a webpage for a figure with a visualization to appear in.
The key element is the div tag in line 2 with the classes visualization and

30

4.2 Visualizations

rgb-cube. When the page is initialized, the Javascript responsible for function-
ality concerning visualizations scans the page for HTML elements with these two
classes. Inside each such element a new RGB cube visualization can be initialized.
The same holds for visualizations of any other color system. Additional elements
indicate where controls like sliders or check boxes are to be placed. Not letting
the visualization script place these containers automatically allows the content
creator to decide whether or not to show these controls.

1 <div class="figure" id="fig-rgb-vis">
2 <div class="rgb-cube visualization aspect -ratio -preserver">
3 <img class="aspect -ratio" src="/resources/img/3by2aspect.

png" />
4 </div>
5 <div class="figure -details">
6 <div class="selected -color"></div>
7 <div class="figure -title">
8 The RGB cube.

9

10 Click and drag [...]
11
12 </div>
13 <div class="visualization -controls"></div>
14 <div class="visualization -controls -advanced"></div>
15 </div>
16 </div>

Listing 4.1: Example of HTML code for embedding the RGB cube
visualization inside a webpage

Provided that all of this is working, it is only a small step to show two or more
color systems side by side for comparison. Listing 4.2 shows the necessary change
in Listing 4.1 for displaying both the RGB cube and the HSV color solid in the
same figure.

1 <div class="aspect -ratio -preserver">
2 <img class="aspect -ratio" src="/resources/img/3by2aspect.png" /

>
3 <div class="visualizations aspect -ratio -preservee">
4 <div class="rgb-cube visualization"></div>
5 <div class="hsv visualization"></div>
6 </div>
7 </div>

Listing 4.2: Replacement of lines 2 to 4 in Listing 4.1 for a comparison
of color systems

As mentioned in Section 3.1, changes in one color system should be synchronized
with the remaining color systems in a comparison. Figure 4.1 shows a structure
of classes that enables this functionality. Each visualization holds a reference to

31

4 Implementation

Figure 4.1: Class diagram for the composition of a Visualization with focus
on the underlying representation of the color system

its own implementation of the AbstractColorSystem class which is responsible
for converting colors from and to RGB. This will be crucial for the synchroniza-
tion, since colors from almost all color spaces can be converted to and from RGB
without much effort (see Figure 2.1). For this purpose, color systems can be con-
nected to each other using the method connect_to. Each implementation of a
color system consists of typically three or four numerical values which are stored
in ColorSystemProperty objects, which in turn can be connected to a slider con-
trol. Therefore, whenever the user makes a change to one of the sliders, one of
the color system properties will notify the color system which again notifies the
visualization. Instead of drawing the visualization in an infinite loop like the scene
of a game, it is sufficient to only update the screen when such an event occurs.
Especially on mobile devices with limited battery capacity this has the benefit of
lower power consumption.

The process of how a change in one slider control propagates to the visualizations
and to the other sliders is shown in detail in Figure 4.2. As outlined above, when a
user makes a change to a slider a chain of events is triggered. The slider controller
sets the value of the corresponding color system property, which in turn notifies

32

4.3 Rendering

the color system it belongs to. The color system class then performs two actions:
First it notifies its parent visualization so that it may redraw itself. Then it uses
the set_from_rgb method of all other color systems it is connected to in order
to update their values. Along with this method call the first color system passes
along a reference to itself which will be used to prevent an infinite loop of events.
The other color systems can then set their properties and sliders to the new values
as well as notify their respective visualizations.

4.3 Rendering
The simplest visualization as far as the implementation is concerned is that of
the RGB cube. A solid as well as a wireframe cuboid are already provided in
the Three.js library. As mentioned in Section 3.1, rather than drawing only a
wireframe model as in Figure 2.3, it is possible to draw the opaque color solid.
This has the benefit of not leaving the interpolation between only a few key colors
to the user’s imagination. Instead, they can see a representation of the color space
as accurate as their display device allows.
One way to achieve this accurate visualization of the RGB color space is by using

the programmable rendering pipeline. The idea is to use the shader programming
language GLSL to write a fragment shader that determines the color of each pixel
based on which portion of the color solid it is supposed to be showing. If the cube
is placed in the world space as a unit cube between the coordinates (0, 0, 0)T and
(1, 1, 1)T, the fragment shader would simply need to interpret the current world
coordinate as an RGB color. Since these coordinates are not provided by default,
they have to be passed to the fragment shader by the vertex shader shown in
Listing 4.3.

1 varying vec4 worldCoord;
2

3 void main() {
4 worldCoord = modelMatrix * vec4(position , 1.0);
5 gl_Position = projectionMatrix *
6 modelViewMatrix *
7 vec4(position , 1.0);
8 }

Listing 4.3: The vertex shader for all color systems. The matrices and
the variable called position are provided by Three.js.

The only difference to the default vertex shader is in lines one and four. Since
the variable worldCoord is declared as varying it will be automatically interpo-
lated between vertices for the individual fragments, which means no additional
calculations are required in the fragment shader in Listing 4.4. As a last step,
these two shaders need to be applied to the cube as a Three.js shader material.

33

4 Implementation

Figure
4.2:Sequence

diagram
show

ing
an

instance
of

how
a
change

to
the

slider
for

red
in

an
R
G
B

visualization
is

propagated
to

a
connected

hue
slider

in
an

H
SV

visualization

34

4.3 Rendering

1 varying vec4 worldCoord;
2

3 void main() {
4 gl_FragColor = vec4(
5 worldCoord.x,
6 worldCoord.y,
7 worldCoord.z,
8 1.0
9);

10 }

Listing 4.4: The fragment shader for the RGB unit cube

Figure 4.3 shows a screenshot of this visualization after some additional ele-
ments have been added, which include labeled axes, a colored patch indicating the
currently selected color as well as a bounding wireframe around the solid cube.
The latter serves two functions. On the one hand, the wireframe clearly marks the
edges of the cube which would otherwise be harder to see without any lighting and
given the smooth transition of colors. On the other hand, it serves as an indicator
of the maximum dimensions of the RGB cube when the cuboid inside is scaled to
a different size. This scaling is done in correspondence to the currently selected
color and it grants the user a look at the colors inside the color solid.
Visualizations of other color systems are rendered in a very similar way. In

the case of HSL and HSV, one major difference is that world coordinates do not
correspond to color coordinates as directly as they do for RGB and CMY, unless
one chooses to interpret HSL and HSV as cubes as well. Considering here the
example of HSV, the world coordinates within either the cylinder or the cone
need to be translated into the hue angle, saturation, and value. In the fragment
shader in Listing 4.5, this transformation is performed by the function get_hsv.

1 varying vec4 worldCoord;
2 uniform float radiusBottom;
3 uniform float radiusTop;
4 const float PI = 3.141592653589793;
5 const float Y_TRANSLATE = .5;
6

7 vec3 get_hsv() {
8 float distFromY = distance(vec2(worldCoord.x, worldCoord.z),
9 vec2(0, 0));

10 float v = worldCoord.y + Y_TRANSLATE;
11 float s = distFromY / mix(radiusBottom , radiusTop , v);
12 float h = (atan(worldCoord.z, -worldCoord.x) + PI)
13 / (PI * 2.0);
14 return vec3(h, s, v);
15 }
16

17 vec3 hsv_to_rgb(in vec3 hsv) { ... }
18

35

4 Implementation

Figure 4.3: Screenshot of the implemented RGB cube visualization

36

4.4 Exercises

19 void main() {
20 vec3 rgb = hsv_to_rgb(get_hsv());
21 gl_FragColor = vec4(rgb.x, rgb.y, rgb.z, 1.0);
22 }

Listing 4.5: The fragment shader for the HSV cylinder or cone.

The transformation assumes a cylinder-like object of unit height centered around
the origin, its bases parallel to the OpenGL XZ plane. This makes it easy to
compute the HSV value, which is simply the current Y coordinate offset by 0.5.
The shader is given two radii for the bottom and the top of the cylinder-like object
as input variables. This removes the need to write two separate shaders for the
cylinder and the cone representation since the HSV cone is equivalent to a cylinder
with bottom radius equal to zero. The saturation is therefore obtained by scaling
the distance from the Y axis distFromY by the inverse of the current interpolation
between the two radii. Finally, the hue can be calculated using the inverse tangent.
For the sake of brevity, the function hsv_to_rgb has been omitted in Listing 4.5
since its mathematical definition has already been given in Section 2.3.5.

4.4 Exercises
An exercise contains a number of tasks as shown in Figure 4.4. With the mixed
tasks exercise of Section 3.3.4 in mind, this implementation allows to keep only
one general exercise class with tasks of different types depending on the current
configuration. All tasks are kept in a list. The first task is started by the exercise
on initialization via a call of the method next_task which calls run on the first
task in the list. This task is then initialized according to its implementation and
eventually the user will click on a button labeled “Next”. If the answer was correct
or the maximum number of attempts max_attemps has been reached, this click will
result in the method on_task_finished to be called in the parent exercise. The
responsibility of this method then is to record the correctness of the just completed
task for the final summary and to start the next task if one is available. Figure 4.4
shows classes for the following types of exercises discussed in Section 3.3:

Color matching exercise: If an instance of the class Exercise contains only
tasks which are an instance of ColorMatchingTask, it would correspond
to a color matching exercise as described in Section 3.3.1. The class
AbstractColorSystem of Section 4.2 is re-used to handle the represen-
tation, randomization and conversion of the current color and the target
color.

Color conversion exercise (advanced): In a broader sense, an advanced color
conversion as described in Section 3.3.3 can also be interpreted as color
matching with numerical rather than visual representations of the target and
the current color. Therefore, the corresponding task is also implemented in
the class ColorMatchingTask. In this case, the flag is_conversion_task

37

4 Implementation

Figure 4.4: Class diagram for an exercise and its tasks

will be true and the converted_target_color will be used in addition to
the other two color system references to display the correct numerical result
if the user answered incorrectly too many times.

Color conversion exercise (medium): The task corresponding to this exercise
type is implemented in the class ColorConversionSelectionTask. The
attribute num_options determines how many options, including the target
color, are to be shown.

Color selection exercise: This exercise type discussed in Section 3.3.2 is imple-
mented in the class ColorSelectionTask.

The configuration of an exercise, like that of a visualization, can be adjusted
in the HTML code of the surrounding webpage. Listing 4.6 demonstrates this
in the example of a mixed tasks exercise with color selection and color matching
tasks. For every div element in a page, a new instance of the JavaScript class
Exercise is created. This class expects two HTML data attributes for said div
element: One which indicates the total number of tasks after which this exercise
is supposed to end, and another which lists the possible task types. The latter is
represented as an array in JavaScript Object Notation (JSON).

38

4.4 Exercises

1 <div class="exercise"
2 data-num-rounds="15"
3 data-task-types='[
4 {
5 "name": "ColorSelection",
6 "options": {
7 "color_systems":
8 ["rgb", "hsl", "hsv", "cmy", "cmyk"],
9 "show_visualization": false ,

10 "max_attempts": 3,
11 "allow_skip_after_first_attempt": true,
12 "num_options": 8
13 },
14 "weight": 1
15 },
16 {
17 "name": "ColorMatching",
18 "options": {
19 "color_systems":
20 ["rgb", "hsl", "hsv", "cmy", "cmyk"],
21 "show_visualization": true,
22 "max_attempts": 3,
23 "allow_skip_after_first_attempt": true,
24 "show_current_color": true,
25 "show_target_color": true
26 },
27 "weight": 1
28 }
29]'
30 >
31 </div>

Listing 4.6: HTML and JSON code for a mixed exercise consisting of
color matching and color selection tasks

39

5 Evaluation

In order to assess the quality of the developed prototype and, as a side-effect, to
gather user feedback, an evaluation has been conducted. On the one hand, the
goal was to quantify the usability of the system. On the other hand, the evalua-
tion was to answer the question whether the visualizations and exercises have a
positive effect on learning outcomes. This chapter describes the methodology of
the evaluation. Furthermore, the results are presented and discussed.

5.1 Method
The evaluation was conducted in the form of a homework assignment for a lecture
on computer graphics titled „Grundlagen der Computergrafik“. The assignment
consisted of two tasks. In the first task, students were asked to use the website
to acquaint themselves with color models and color spaces in general, as well as
with RGB, CMY, CMYK, HSL, and HSV in particular. To fulfill this part of
their homework, students were required to complete each of the exercises Color
Matching, Selection, Conversion Selection, and Conversion at least once. At the
time of evaluation, each of these exercises consisted of ten tasks. The second task
was to fill out a Google Forms1 questionnaire. Because class attendance is not
mandatory and with the intention for all students to be roughly on the same level
in the beginning, the topic of color theory was not discussed in detail in class
before said homework assignment.
For evaluating the learning effect, students were randomly assigned to one of

two groups:

Group A: This group would only be able to access visualizations and exercises
concerned with RGB, CMY, and CMYK. On the pages about HSL and
HSV they would see the same static images as are used in this document.

Group B: This group would only be able to access visualizations and exercises
concerned with RGB, HSL, and HSV. There was no replacement for the
CMY visualization.

Group A and group B were therefore each both control and experimental group,
depending on the topic as shown in Table 5.1.
The assignment of each student to one of these groups and the subsequent

management of access to certain content was realized by means of the students’
1https://www.google.com/forms/about/

41

https://www.google.com/forms/about/

5 Evaluation

Table 5.1: Experiment design
RGB/CMY/CMYK RGB/HSL/HSV

Group A Experiment Control
Group B Control Experiment

university email addresses. Participants were required to enter their university
username in order to register for the homework assignment. They then automat-
ically received a personalized key via email with which they could log on to the
website.

For the assessment of usability, the questionnaire included the questions for the
System Usability Scale (SUS) [Bro+96, pp. 4f.]. The SUS has been used in a
large number of studies over the years [BKM08, p. 576] and is considered a valid
and reliable tool for measuring usability, especially considering the relatively small
number of questions [BKM08, pp. 581f., 588]. It consists of ten statements which
the subject must respond to on a five-point Likert scale ranging from “strongly
disagree” to “strongly agree” [Bro+96, p. 5]. In order to distinguish between the
usability of the visualizations and that of the exercises, the questionnaire included
one set of SUS questions for each.

For the purpose of testing the hypothesis that the visualizations and exercises
do have a positive effect on learning outcomes, the questionnaire also included
ten color conversion tasks. These tasks were similar to the tasks in the color
conversion selection exercise in that for each question five options were given.
In each case only one of the five options was correct. Of the ten tasks, five
were to convert between RGB, CMY, or CMYK, while the other five dealt with
conversions between RGB, HSL, and HSV. Both experimental groups received the
same questionnaire, which is attached in Appendix A.

To discourage the students from cheating in the questionnaire, they were re-
minded that their fulfillment of the homework requirements would not be influ-
enced by their performance in said tasks. In the weeks after the evaluation, the
content restrictions for both experimental groups have been removed. This was
done in order to give every student as equal as possible an opportunity to study
in the event that color conversions will be part of the final exam.

5.1.1 Participants
In total, 56 students attending the computer graphics lecture mentioned above
participated in the evaluation. Two of them were excluded from the analysis
because they each completed the questionnaire twice and both times reported
to have seen the questions for the first time. The lecture was given in German.
Participants were between 19 and 29 years old (average M = 22.1, standard
deviation SD = 2.2), eight of them being female. The distribution of participants
across groups is summarized in Table 5.2. Three participants reported having a
form of color vision deficiency. Since most of the product’s contents except for the

42

5.2 Results

color matching exercise do not rely on color vision alone, the three participants
were not excluded. Of the 56 students, only 2 reported that they used a tablet
computer as their primary device to access the website. Another student checked
the option “other touch screen device”.

Table 5.2: Demographical data of participants by group
Group A Group B Both groups

Participants 27 27 54
female 4 4 8
male 23 23 46
Age: M 22.0 22.1 22.1
Age: SD 2.1 2.3 2.2
Color vision deficiencies 2 1 3

5.1.2 Statistical Analysis
SUS scores were calculated on a per-subject basis as described by Brooke et al.
[Bro+96, p. 6] and the arithmetic means were calculated for the visualization
ratings as well as for the exercise ratings. The worst possible SUS rating is 0
and the best possible rating is 100. However, SUS ratings should not be confused
with the percentile rank; a score of 50, for example, does not indicate a system
with better usability than half of all possible systems. It is also important to note
that responses to the SUS questions should not be analyzed for each question
individually [Bro+96, p. 6]. Instead, the aforementioned average ratings can be
set in relation to other SUS scores based on an analysis of about 200 previous
SUS studies [BKM08, p. 575, 592]. In most of these roughly 200 studies, the
questions were modified to use the word “awkward” rather than “cumbersome”
and the word “product” instead of “system” [BKM08, p. 576]. The majority of
attendees of the lecture are not native English speakers and they were free to
look up unknown words while answering the questionnaire. Therefore, it can be
assumed that the comparison of SUS scores of this analysis with those obtained
using modified questions is still valid.
In order to test the hypothesis of Section 5.1, Welch’s one-sided t-test was con-

ducted with independent samples. Specifically, the null hypothesis is the following:

Students will answer fewer or the same number of questions about a
set of color spaces C correctly if they had access to C’s visualizations
and exercises.

5.2 Results
On average, the visualizations received an SUS score of 74.5 (SD = 13.1) and the
exercises received a score of 66.2 (SD = 19.0). As is also visible in Figure 5.1,

43

5 Evaluation

the minimum and maximum SUS score for the exercises is less than the respective
minimum and maximum score for the visualizations.

Visualizations Exercises
0

20

40

60

80

100

S
U

S
 s

co
re

Figure 5.1: Collected SUS scores are visualized as violin plots. The horizon-
tal bars indicate the minimum, the mean, and the maximum score.

In comparison to other SUS studies [BKM08, p. 592], the score for the visu-
alizations falls into the third quartile, it is assigned an acceptability rating of
“acceptable” and an adjective rating of “good”. The SUS score for the exercises
lies within the second quartile. Its acceptability is considered “marginal” (albeit
on the “high” end), its adjective rating is “OK”.

In the color conversion tasks of the questionnaire dealing with the color spaces
RGB, CMY, and CMYK, students of group A (who received the visualizations
and exercises for said color spaces) answered an average of 4.5 questions correctly
(SD = 1.1), whereas students of group B did 3.6 (SD = 1.8). This difference is
significant with t-test results of t(44.3) = 2.2 and p = 0.018 < 0.05.

On the other hand, in the RGB, HSL, and HSV conversions, group A responded
correctly to 2.4 questions on average (SD = 1.4), while group B responded cor-
rectly to 2.6 questions (SD = 1.8). As expected, group B does answer more
questions correctly than group A in this category, but the difference is not signif-
icant; t(49.0) = 0.4, p = 0.337 ≥ 0.05. These results are reflected in Figure 5.2.

44

5.3 Discussion

A: CMY(K) B: CMY(K) A: HSL, HSV B: HSL, HSV
0

1

2

3

4

5

N
u
m

b
e
r

o
f

co
rr

e
ct

 a
n
sw

e
rs

Figure 5.2: The numbers of correct answers by experimental group and con-
dition are visualized as violin plots. Horizontal bars indicate the
average.

5.3 Discussion

In absolute terms, the number of correctly answered conversion questions indi-
cates that students did seem to have a good understanding of the color systems
involved at the end of the evaluation. Had they simply guessed the answer to
each conversion, at five options per question they would have been expected to
only answer one conversion correctly per category (see Figure 5.2). Whether this
understanding was present before they used the product can not be determined
from the present data.
Students converted more colors correctly on average if they previously had access

to interactive visualizations and exercises for the respective color systems involved
in the conversion. This difference was significant in the case of questions about the
RGB, CMY, and CMYK color spaces and therefore indicates a positive effect on
learning. However, providing visualizations and exercises did not show a significant
effect when it came to questions about RGB in combination with HSL and HSV. In
the following, factors that might have influenced the evaluation will be discussed.
Whether those factors did indeed have an effect on the outcome and in which way
would have to be verified in further studies.
Because the evaluation was conducted among students in a class on computer

graphics, the set of participants is very homogeneous in terms of age, gender, and
level of education. The benefit of this is that the product could be tested on a group

45

5 Evaluation

of subjects closest to the primary target audience. On the other hand, it is now
unclear how accessible the product will be to students who are not as familiar with
computer science, or to a younger audience still attending school. Furthermore,
due to the method of evaluation, the visualizations and exercises were most likely
not used in the exact same way as they normally would have been: As discussed
in Section 2.2, it would make sense to use the product as an augmentation of the
lecture, which in this case was in part avoided for reasons outlined in Section 5.1.
Furthermore, for students who wanted the full homework points, participation was
mandatory. It was useful for the homework assignment and for the questionnaire
as well to require the completion of four specific exercises. This ensured that
every participant had used the various exercises not just superficially. However,
an average user might not finish all tasks of every exercise because, for instance,
they realize sooner that they already understand the concept. These facts might
have been part of the reason why seven participants commented on the number of
exercise tasks being too high. In general, it would also be interesting to see how
the difference between groups develops after a longer period of time with students
not being exposed to the topic in the meantime.

Another thing to keep in mind about the SUS scores is that no single participant
had seen the product in its entirety when they submitted their rating. In addition,
since the SUS is supposed to be a very general solution for evaluating different
products, some of the ten statements are not clearly defined in the context of the
product of this thesis. For example, one might assume that the statement “I think
that I would need the support of a technical person to be able to use this system”
would be mostly rejected by a group of people who can already be considered
technical persons. A further example is the statement “I needed to learn a lot
of things before I could get going with this system,” which, depending on one’s
interpretation, one would assume to be answered mostly affirmatively, as learning
is one of the goals of this product.

Nevertheless, this evaluation has provided useful insight. The usability accept-
ability rating of “acceptable” or better indicates that development of the product
has been going in the right direction. Many participants also used the opportu-
nity of the input field for additional feedback at the end of the questionnaire (see
Appendix B) or wrote helpful emails with suggestions for improvement. Finally,
it is noteworthy that there have been no complaints about major malfunctions in
the software or about the visualizations and exercises not running at all on a given
system.

46

6 Conclusion

The aim of this thesis was to develop a learning tool for students to study and
practice certain aspects of color science with a focus on color models and color
spaces (see Section 1.2). This aim was formulated in light of a previous solution
not being easily accessible with modern web browsers anymore. The finished
prototype appears to be functional and adequately usable on full-sized computers
as well as on mobile devices, based on user feedback.
One challenging aspect of the implementation was getting acquainted with the

languages and tools necessary for developing a hopefully robust web application
(see Section 4.1). Especially the feature-rich Symfony framework can be challeng-
ing to learn with little previous knowledge of PHP. At the same time, however, one
can easily appreciate the merit of said languages and tools. The Twig templating
engine, for example, is very helpful for producing HTML code in that it makes
the process of writing HTML much less repetitive and better organized. Similar
benefits come with Less CSS compared to regular CSS, and with the method of
transpiling Javascript and merging many files into one.
The main focus of the prototype lies on the systems RGB, CMY(K), HSL, and

HSV. This is partly due to the syllabus of the computer graphics lecture and
partly because some of the other systems would be more challenging to visualize
or to incorporate in the generalized exercises. However, as has been outlined in
the concept in Chapter 3, these challenges can certainly be overcome.
The visualizations themselves could be implemented very closely to their con-

ceptualization in Chapter 3. Most notably, thanks to the GLSL shaders presented
in Section 4.3, a look inside each implemented color space could be realized. The
largest missing feature as of yet is the possibility for users to fully configure their
own comparison of visualizations.
The exercises color matching, selection, and conversion have been mostly im-

plemented as described in Section 3.3. Due to the generalized nature of these
exercises, it should be easy to make them available for any color systems that may
be implemented in the future. In the current state of the prototype, the exer-
cises can be and have been adapted to different contexts in regards to difficulty,
included tasks, and featured color systems. Furthermore, there are now exercise
settings a user can indeed change, such as the number of options in color selection
tasks or whether to display hints in color matching tasks. It is hoped that these
flexibilities will allow students to somewhat adapt the difficulty and contents of
exercises to their progress, thereby reducing frustration and maintaining moti-
vation. Not yet implemented are the specialized mixed exercise tasks outlined in
Section 3.3.4. These would be of most value once other color spaces like CIE XYZ,

47

6 Conclusion

CIELAB, Munsell, or YCbCr are implemented.

48

Bibliography
[06] OpenGL 2.1 Reference Pages. https://www.opengl.org/sdk/docs/

man2/xhtml/glColor.xml. Accessed: 2017-01-05. 2006.
[10] Wavelengths of Visible Light. National Aeronautics and Space Ad-

ministration, Science Mission Directorate, http://missionscience.
nasa.gov/ems/09_visiblelight.html. Accessed: 2016-09-13. 2010.

[11a] Recommendation ITU-R BT.601-7: Studio encoding parameters of dig-
ital television for standard 4:3 and wide-screen 16:9 aspect ratios. 2011.

[11b] Recommendation ITU-T T.871: Information technology – Digital com-
pression and coding of continuous-tone still images: JPEG File Inter-
change Format (JFIF). 2011.

[13] How to interpret the sRGB color space (specified in IEC 61966-2-1)
for ICC profiles. World Wide Web Consortium, https://www.w3.
org/Graphics/Color/srgb. Accessed: 2016-08-24. 2013.

[15a] Recommendation ITU-R BT.2020-2: Parameter values for ultra-high
definition television systems for production and international pro-
gramme exchange. 2015.

[15b] Recommendation ITU-R BT.709-6: Parameter values for the HDTV
standards for production and international programme exchange. 2015.

[16] import - JavaScript. Mozilla Developer Network, https : / /
developer.mozilla.org/en/docs/Web/JavaScript/Reference/
Statements/import. Accessed: 2016-10-22. 2016.

[AKM07] Ahirwal, Balkrishan, Khadtare, Mahesh, and Mehta, Rakesh.
“FPGA based system for color space transformation RGB to YIQ and
YCbCr.” In: International Conference on Intelligent and Advanced
Systems 2007. IEEE. 2007, pp. 1345–1349.

[BB09a] Burger, Wilhelm and Burge, Mark J. Principles of Digital Image
Processing: Fundamental Techniques. 1st. Undergraduate Topics in
Computer Science. London: Springer-Verlag London, 2009. isbn: 978-
1-84800-190-9, 978-1-84800-191-6.

[BB09b] Burger, Wilhelm and Burge, Mark J. Principles of Digital Image
Processing: Core Algorithms. 1st. Undergraduate Topics in Computer
Science. London: Springer-Verlag London, 2009. isbn: 978-1-84800-
194-7, 978-1-84800-195-4.

49

https://www.opengl.org/sdk/docs/man2/xhtml/glColor.xml
https://www.opengl.org/sdk/docs/man2/xhtml/glColor.xml
http://missionscience.nasa.gov/ems/09_visiblelight.html
http://missionscience.nasa.gov/ems/09_visiblelight.html
https://www.w3.org/Graphics/Color/srgb
https://www.w3.org/Graphics/Color/srgb
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Statements/import

Bibliography

[BKM08] Bangor, Aaron, Kortum, Philip T, and Miller, James T. “An
empirical evaluation of the system usability scale.” In: Intl. Journal of
Human–Computer Interaction 24.6 (2008), pp. 574–594.

[Bro+96] Brooke, John et al. “SUS-A quick and dirty usability scale.” In: Us-
ability evaluation in industry 189.194 (1996), pp. 4–7.

[Ç+11] Çelik, Tantek, Lilley, Chris, Baron, L David, et al. CSS Color
Module Level 3: W3C Recommendation 07 June 2011. World Wide
Web Consortium, http://www.w3.org/TR/2011/REC-css3-color-
20110607. Accessed: 2016-08-24. 2011.

[DBM83] Dartnall, Herbert JA, Bowmaker, James K, and Mollon, John
D. “Human visual pigments: microspectrophotometric results from the
eyes of seven persons.” In: Proceedings of the Royal Society of London
B: Biological Sciences 220.1218 (1983), pp. 115–130.

[GRR10] Ganesan, P, Rajini, V, and Rajkumar, R Immanuvel. “Segmen-
tation and edge detection of color images using CIELAB color space
and edge detectors.” In: Emerging Trends in Robotics and Commu-
nication Technologies (INTERACT), 2010 International Conference
on. IEEE. 2010, pp. 393–397.

[Gui32] Guild, John. “The colorimetric properties of the spectrum.” In: Philo-
sophical Transactions of the Royal Society of London. Series A, Con-
taining Papers of a Mathematical or Physical Character 230 (1932),
pp. 149–187.

[HSF06] Hrehorova, Erika, Sharma, Abhay, and Fleming, PD. “Color re-
production studies in RGB and CMYK workflows using inkjet printer
drivers and RIPs.” In: Proc. 58th TAGA Annual Technical Conference,
Vancouver, British Columbia. Citeseer. 2006, pp. 159–171.

[JG78] Joblove, George H and Greenberg, Donald. “Color spaces for com-
puter graphics.” In: ACM siggraph computer graphics. Vol. 12. 3. ACM.
1978, pp. 20–25.

[Jud+64] Judd, Deane B et al. “Spectral distribution of typical daylight as
a function of correlated color temperature.” In: Josa 54.8 (1964),
pp. 1031–1040.

[Man+16] Mansencal, Thomas et al. Colour 0.3.8. http://dx.doi.org/10.
5281/zenodo.57294. July 2016. doi: 10.5281/zenodo.57294. url:
http://dx.doi.org/10.5281/zenodo.57294.

[May+95] Mayer, Richard E et al. “A generative theory of textbook design:
Using annotated illustrations to foster meaningful learning of sci-
ence text.” In: Educational Technology Research and Development 43.1
(1995), pp. 31–41.

[May02] Mayer, Richard E. “Multimedia learning.” In: Psychology of learning
and motivation 41 (2002), pp. 85–139.

50

http://www.w3.org/TR/2011/REC-css3-color-20110607
http://www.w3.org/TR/2011/REC-css3-color-20110607
http://dx.doi.org/10.5281/zenodo.57294
http://dx.doi.org/10.5281/zenodo.57294
http://dx.doi.org/10.5281/zenodo.57294
http://dx.doi.org/10.5281/zenodo.57294

Bibliography

[McL76] McLaren, K. “XIII—The Development of the CIE 1976 (L* a* b*)
Uniform Colour Space and Colour-difference Formula.” In: Journal of
the Society of Dyers and Colourists 92.9 (1976), pp. 338–341. issn:
1478-4408. doi: 10 . 1111 / j . 1478 - 4408 . 1976 . tb03301 . x. url:
http://dx.doi.org/10.1111/j.1478-4408.1976.tb03301.x.

[Mea+09] Means, Barbara et al. “Evaluation of evidence-based practices in on-
line learning: A meta-analysis and review of online learning studies.”
In: US Department of Education (2009).

[MM99] Moreno, Roxana and Mayer, Richard E. “Cognitive principles of
multimedia learning: The role of modality and contiguity.” In: Journal
of educational psychology 91.2 (1999), p. 358.

[Mor03] Moroney, Nathan. “A hypothesis regarding the poor blue constancy
of CIELAB.” In: Color Research & Application 28.5 (2003), pp. 371–
378.

[Mun12] Munsell, Albert H. “A pigment color system and notation.” In: The
American Journal of Psychology 23.2 (1912), pp. 236–244.

[NNJ43] Newhall, Sidney M, Nickerson, Dorothy, and Judd, Deane B. “Fi-
nal report of the OSA subcommittee on the spacing of the Munsell
colors.” In: JOSA 33.7 (1943), pp. 385–418.

[Ope16] OpenGL Wiki contributors. Legacy OpenGL — OpenGL Wiki.
http : / / www . khronos . org / opengl / wiki _ opengl / index . php ?
title=Legacy_OpenGL&oldid=13721. Accessed: 2017-01-05. 2016.

[Pou16] Poushter, Jacob. “Smartphone Ownership and Internet Usage Con-
tinues to Climb in Emerging Economies.” In: Pew Research Center:
Global Attitudes & Trends (2016).

[SD03] Schröder, Monika and Domik, Gitta. „Veränderungen von Lehrein-
heiten durch veränderte Ansprüche am Beispiel ‚Computerbilder‘.“ In:
DeLFI 2003: Die 1. e-Learning Fachtagung Informatik. Ed. by Bode,
Arndt et al. Bonn: Gesellschaft für Informatik, 2003, pp. 402–411.

[SG31] Smith, Thomas and Guild, John. “The CIE colorimetric standards
and their use.” In: Transactions of the Optical Society 33.3 (1931),
p. 73.

[Tig08] Tigges, Anja. Geschlecht und digitale Medien. Entwicklung und Nut-
zung digitaler Medien im hochschulischen Lehr-/Lernkontext. 1st. VS
Verlag für Sozialwissenschaften, 2008. Chap. Studie 3: Entwicklung
und Nutzung des Lernmoduls „Computergenerierte Farbe“ des Pro-
jekts SIMBA, pp. 163–186. isbn: 978-3-531-15707-8. doi: 10.1007/
978-3-531-90812-0.

51

http://dx.doi.org/10.1111/j.1478-4408.1976.tb03301.x
http://dx.doi.org/10.1111/j.1478-4408.1976.tb03301.x
http://www.khronos.org/opengl/wiki_opengl/index.php?title=Legacy_OpenGL&oldid=13721
http://www.khronos.org/opengl/wiki_opengl/index.php?title=Legacy_OpenGL&oldid=13721
http://dx.doi.org/10.1007/978-3-531-90812-0
http://dx.doi.org/10.1007/978-3-531-90812-0

Bibliography

[Wir15] Wirfs-Brock, Allen. ECMAScript 2015 Language Specification.
ECMA International, http : / / www . ecma - international . org /
publications/files/ECMA-ST/Ecma-262.pdf. Accessed: 2016-10-
22. 2015.

[WMN12] Woodcock, Ben, Middleton, Andrew, and Nortcliffe, Anne.
“Considering the Smartphone Learner: an investigation into student
interest in the use of personal technology to enhance their learning.”
In: Student Engagement and Experience Journal 1.1 (2012), pp. 1–15.

[Wri29] Wright, William David. “A re-determination of the trichromatic co-
efficients of the spectral colours.” In: Transactions of the Optical So-
ciety 30.4 (1929), p. 141.

52

http://www. ecma-international. org/publications/files/ECMA-ST/Ecma-262.pdf
http://www. ecma-international. org/publications/files/ECMA-ST/Ecma-262.pdf

Appendices

53

A Questionnaire

These are all the items of the Google Forms questionnaire mentioned in Section 5.1.
They include the ten statements for the SUS, as well as the color conversion
questions. Items not marked with an asterisk were optional.

Page “General information”
• Survey key

IMPORTANT: You can view your survey key after logging in at color.lukas-
stratmann.com (this is not your login key!). It will be used to ensure you fulfilled
all criteria for the GdC exercise, so make sure you enter the correct one; your data
entered in these forms will be treated anonymously.

• Age*

• Sex*
– Female
– Male
– Other

• Do you have any form of color vision deficiency?*
(As compared to the majority of humans. Please don’t choose “Yes” just because
you can’t see IR or UV.)

– No
– Yes

• Field of study
– Computer Science (Bachelor)
– Computer Science (Master)
– Other...

• What device did you primarily use to access the website?*
– Laptop or desktop computer with keyboard and mouse
– Smartphone
– Tablet

55

A Questionnaire

– Other touch screen device
– Other...

Page “Color conversion”
It is important for my thesis that you answer these questions honestly and without
cheating! If you are not sure about an answer, have a guess. This data will be
treated anonymously.

• What is (0.5, 1.0, 0.5)_HSL in RGB?*
– (1, 0, 0)_RGB
– (0, 1, 1)_RGB
– (1, 0, 1)_RGB
– (0, 0.5, 0.5)_RGB
– (0.5, 1, 1)_RGB

• What is (127, 255, 127)_RGB in HSL?*
– (1/3, 1, 3/4)_HSL
– (1/3, 1/2, 1)_HSL
– (1/3, 3/4, 1)_HSL
– (2/3, 1, 3/4)_HSL
– (0, 3/4, 3/4)_HSL

• What is (0.2, 0.5, 0.8)_RGB in CMYK?*
– (0.6, 0.3, 0.0, 0.2)_CMYK
– (0.6, 0.3, 0.0, 0.8)_CMYK
– (0.8, 0.5, 0.2, 0.2)_CMYK
– (0.8, 0.5, 0.2, 0.8)_CMYK
– (1.0, 0.7, 0.4, 0.2)_CMYK

• What is (1, 0, 1)_RGB in HSV?*
– (4/6, 1, 1)_HSV
– (1/6, 1, 1)_HSV
– (5/6, 1, 1)_HSV
– (1/6, 1, 1/2)_HSV
– (5/6, 1, 1/2)_HSV

• What is (0.2, 0.4, 0.6)_CMY in CMYK?*

56

– (0.2, 0.4, 0.6, 0.2)_CMYK
– (0.0, 0.2, 0.4, 0.2)_CMYK
– (0.2, 0.4, 0.6, 0.6)_CMYK
– (0.0, 0.4, 0.6, 0.2)_CMYK
– (0.2, 0.4, 0.0, 0.6)_CMYK

• What is (240°, 1, 0.5)_HSV in HSL?*
– (120°, 0.5, 0.25)_HSL
– (240°, 1, 0.5)_HSL
– (240°, 1, 0.25)_HSL
– (240°, 0.5, 0.5)_HSL
– (120°, 1, 0.25)_HSL

• What is (0.3, 0.5, 0.2)_CMY in RGB?*
– (0.5, 0.8, 0.7)_RGB
– (0.8, 0.5, 0.7)_RGB
– (0.2, 0.0, 0.3)_RGB
– (0.7, 0.5, 0.8)_RGB
– (0.9, 0.7, 1.0)_RGB

• What is (15, 0, 127)_RGB in CMY?*
– (127, 0, 112)_CMY
– (255, 127, 241)_CMY
– (240, 255, 128)_CMY
– (241, 255, 127)_CMY
– (112, 127, 0)_CMY

• What is (0.7, 0.9, 0.0, 0.1)_CMYK in CMY?*
– (0.8, 1.0, 0.9)_CMY
– (0.8, 1.0, 0.1)_CMY
– (0.6, 0.8, 0.0)_CMY
– (0.4, 0.2, 0.1)_CMY
– (0.2, 0.0, 0.9)_CMY

• What is (120°, 255, 63)_HSV in RGB?*
– (255, 255, 255)_RGB
– (0, 0, 63)_RGB

57

A Questionnaire

– (127, 63, 127)_RGB

– (63, 63, 0)_RGB

– (0, 63, 0)_RGB

Page “Usability: Visualizations”

This part is only about the three-dimensional visualizations, not the exercises (see
next part)!

[Each of the following statements (excluding the feedback item) had five options
ranging from “strongly agree” to “strongly disagree”.]

• (Visualizations:) I think that I would like to use this system frequently.*

• (Visualizations:) I found the system unnecessarily complex.*

• (Visualizations:) I thought the system was easy to use.*

• (Visualizations:) I think that I would need the support of a technical person
to be able to use this system.*

• (Visualizations:) I found the various functions in this system were well in-
tegrated.*

• (Visualizations:) I thought there was too much inconsistency in this system.*

• (Visualizations:) I would imagine that most people would learn to use this
system very quickly.*

• (Visualizations:) I found the system very cumbersome to use.*

• (Visualizations:) I felt very confident using the system.*

• (Visualizations:) I needed to learn a lot of things before I could get going
with this system.*

• Feedback about the visualizations

Page “Usability: Exercises”

This part is only about the exercises!
[The items on this page are the same as those on the previous page with the

word “visualizations” replaced by “exercises”.]

58

Page “Finished”
• Can the data you provided be used anonymously in the evaluation?*

(This will not affect your homework scores, so please be honest!)

– Yes, I followed all the instructions and I answered all questions honestly.
This is the first time I filled out or saw this questionnaire.

– No.

• Additional feedback

• Browser
(In case you encountered any bugs. Remember that you can also send me an email
in that case, which would make it easier for me to ask follow-up questions to try
and fix the bug.)

59

B User Feedback

Listed here is the feedback collected in the questionnaire, organized by experimen-
tal group. Not listed are emails that were sent privately, of which there only were
a few anyway.

B.1 Visualizations
Group A:

• Sehr schöne Darstellungen! Eine Colorpick-Funktion wäre genial
• Also mir persönlich nutzt diese 3D-Darstellung gefühlt so gut wie gar nichts...

Ich stelle mir das anders vor, wüsste jetzt aber auch nicht, wie ichs besser
visualisieren sollte.

• +

Group B:
• Ich bin begeistert
• For HSV and HSL you have to know that you can rotate the cone/“diamond”

by drag and drop to see the top. Maybe if it was pre-tilted a bit you could
see all dimensions of it.

• Sorry I haven’t used them a lot because I was already familiar with all of
the explained color models/spaces.

• Nice tool, but hard conversions exercises.

B.2 Exercises
Group A:

• Ich weiß nicht ob für den Lerneffekt wirklich 15 aufgaben pro berreich
notwendig sind. Ich bin mir irgendwann einfach nurnoch dumm vorgekom-
men zum 1000. mal das selbe zu tun. Für mich hat das vielleicht einen
Lerneffekt für das Kopfrechnen gehabt ansonsten, naja...

• Waren echt gut gemacht.
• Matching the right color was really difficult because the allowed difference

is in my opinion very small.

61

B User Feedback

• 10 Fragen fande ich persönlich zu viele, da die Aufgaben immer sehr gelich
waren, wodurch ich nach 7 oder 8 Fragen oft dachte „Nicht noch mal die
Regeler verschieben bis es ungefähr passt“

• Number of exercises was very high for doing the same thing over and over
again

• Color Conversion Selection was too easy because only the first number was
relevant most of the time. Color Conversions from CMY to CMYK is copying
the exact same thing from CMY to CMYK if K=0 is allowed -> Predeter-
mined K value would make it more interesting.

• Farbtolleranz bei Optischen Farbabgleich zu gering, sonst sehr schön

Group B:

• Es waren im Gesamten doch zu viele Aufgaben. 5 Fragen pro Bereich hätten
auch gereicht, da das Prinzip ja immer gleich war.

• At the exercises, there could have been a “hint” box, where the formulas
were written for example.

• Too many tasks with converting hsv to hsl which takes forever
• A lot of multiple choice questions are easy to bypass by only knowing a few

rules of thumb: max{r,g,b} = v or H=H
• Worse grinding than vanilla WoW.
• The exercises were a good training for conversion for me. I think there were

too many conversions to do. It took a lot of time to calculate, but the
concept was already clear to me.

• Hard conversion exercises.

B.3 Additional Feedback

Group A:

• Wenn man während der Execises schon die ganze Zeit die selben Auf-
gabenarten rechnet und die selben dann während des Fragebogens nochmal
rechnen soll finde ich das höchst fragwürdig und nervig.

• Keine Bugs, die das System beeinträchtigt hätten.
• Bei der Aufgabe , bei welcher man die passende Farbe zu der gegebenen

angeben soll, war es schwer die richtige zu finden aufgrund des PC Monitors.
In den Aufgaben gab es keine zu HSV/HSL. Somit bin ich mir nicht sicher
ob ich das in diesem Fragebogen richtig ausgefüllt habe. Eine Übung dazu
wäre hilfreich.

62

B.3 Additional Feedback

• Weniger Rechenaufgaben bitte ! Ich hatte es auch nach dem ersten mal ver-
standen. Ansonsten hat es mir geholfen, die Systeme und ihre Umrechnung
zu verstehen.

Group B:
• Tolles Konzept und tolle Seite mit super Visualisierungen. Der Zeitaufwand

für die Aufgaben war jedoch etwas zu hoch. Siehe Feedback von Seite 4.
• The precision of the numbers is too exact or maybe too abstract (like

0,999999999999999), maybe use percentages from 0 to 100 with one deci-
mal place.

• I was already familiar with color spaces and color models. I really learned
how to convert these in detail and with pen and paper :D

• HSV to HSL conversions take too much time
• Konversionen zwischen Intervall [0,1] und [0,255] auch [0, 2pi] sind nicht klar

im Text!
• I did not find any bug. Nice work!
• Finde das System im großen und ganzen sehr gut aber eine Formelsammlung

wäre noch gut, damit man nicht alles abschreiben muss.

63

C Changelog Since Evaluation

The following changes have been made to the prototype since the evaluation (in
chronological order from earliest to most recent):

• The necessity to log in has been removed.
• As requested, the default unit for hues in the HSL and HSV color models is

now degrees.
• The user has the option to choose their preferred units in visualizations.
• It has been pointed out in an email that sliders for visualizations accepted

numbers outside the valid range. Another student who participated in the
evaluation helped discover an issue in color matching tasks when CMYK was
involved: Because the task would allow invalid CMYK colors, the calculation
of distances between colors would often not match what the user saw on the
screen. Sliders and number inputs now ensure that only valid numbers can
be entered.

• As one of the subjects pointed out in the questionnaire (see Section B.3),
the numeric precision could be very high in color representations. Numbers
are now rounded according to the currently selected units.

• An options menu has been added to the beginning of every exercise (can be
disabled in HTML). The number of tasks per exercise is now user-selectable
(minimum: 3, default: 10).

• Optionally, the units for color representations can be randomly selected in
each exercise task. This should make some tasks more challenging where
previously solutions could be very obvious, e.g. the conversion from CMYK
to CMY.

• As requested, hints will now be shown in color matching tasks when the user
approaches the correct color. Hints are enabled by default but can be turned
off in the options menu at the beginning of an exercise.

• Visualizations can be viewed in fullscreen.
• Feedback in color matching tasks is now displayed as a highlighted item

among a short list of possible feedbacks. This is to make it more clear how
accurate the current input is.

• As suggested in Section B.1, the initial viewing angle in visualizations has
been changed.

65

C Changelog Since Evaluation

• A presentation mode for exercises has been added. This allows a presenter
to prepare a non-random reusable sequence of (color matching) tasks.

66

	Introduction
	Problem
	Aim
	Approach

	Fundamentals
	Advantages of Web-Based Applications
	Computer-Aided Learning
	Color Models and Color Spaces
	CIE 1931 XYZ, CIE 1931 xy, and Gamuts
	RGB and sRGB
	CMY and CMYK
	HSL
	HSV
	Munsell
	CIELAB
	YCbCr

	Concept
	Analysis of Important Components
	Visualizations
	Exercises
	Color Matching Exercise
	Color Selection Exercise
	Conversion Exercise
	Mixed Tasks Exercise

	Implementation
	Frameworks, Tools, and Libraries
	Visualizations
	Rendering
	Exercises

	Evaluation
	Method
	Participants
	Statistical Analysis

	Results
	Discussion

	Conclusion
	Bibliography
	Appendices
	Questionnaire
	User Feedback
	Visualizations
	Exercises
	Additional Feedback

	Changelog Since Evaluation

